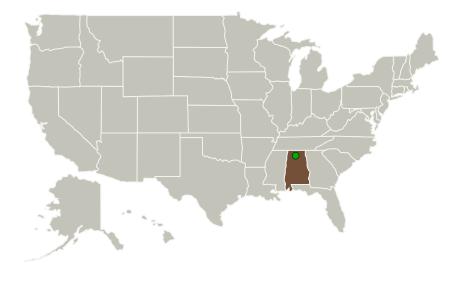
An Additive Manufacturing Technique for the Production of Electronic Circuits, Phase I



Completed Technology Project (2016 - 2017)

Project Introduction

The proposed 9-month research project aims for the development of additive manufacturing techniques for the creation of electronic devices. It will develop an innovative additive manufacturing technique that combines the ink-based printing with laser melting technology to directly print a three-dimensional (3D) system with built-in electrical properties and functioning as an electronic device. The fundamental electronic device includes the resistor, conductor, semiconductor, insulator and capacitor. This proposed 3D printing technique involves (1) the development of five fundamental ink-based printing materials suitable for conductor, resistor, capacitor, semiconductor and insulator production; (2) the design of the five rotating injectors for five distinct ink-based materials; (3) the development of laser melting technology to provide on-demand melting and solidification of the dispensed ink-based materials; and (4) the evaluation of 3D printing control software.

Primary U.S. Work Locations and Key Partners

An Additive Manufacturing Technique for the Production of Electronic Circuits, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Images	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)		
Technology Areas	3	

Small Business Innovation Research/Small Business Tech Transfer

An Additive Manufacturing Technique for the Production of Electronic Circuits, Phase I

Completed Technology Project (2016 - 2017)

Organizations Performing Work	Role	Туре	Location
Morningbird Media Corporation	Lead Organization	Industry Minority-Owned Business, Small Disadvantaged Business (SDB)	Madison, Alabama
Alabama A&M RISE Foundation	Supporting Organization	Academia	Normal, Alabama
Marshall Space Flight Center(MSFC)	Supporting Organization	NASA Center	Huntsville, Alabama

Primary U.S. Work Locations

Alabama

Images

Briefing Chart Image

An Additive Manufacturing Technique for the Production of Electronic Circuits, Phase I (https://techport.nasa.gov/imag e/130408)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Morningbird Media Corporation

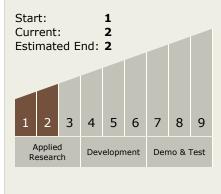
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Chance M Glenn

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

An Additive Manufacturing Technique for the Production of Electronic Circuits, Phase I

NASA

Completed Technology Project (2016 - 2017)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.4 Manufacturing
 - □ TX12.4.3 Electronics and Optics Manufacturing Process

